Many of these corrections have been made in the second printing of the 2nd Edition.

Acknowledgements
"for his studies of chemical processes on solid surfaces"…
I would particularly like to acknowledge … Brigitte Vögele … for providing original figures. The heroic efforts of Yukio Ogata in securing the sumi nagashi….
Czesław Miłosz
Errors in the second edition were pointed out by Qixiu Li.

Chapter 1
p. 20 Should read
"The International Union of Pure and Applied Chemistry (IUPAC) recommendations {*}
define samples with free diameters <2 nm as microporous, between 2 and 50 nm as mesoporous, and >50 nm as macroporous."

p. 52. In Exercise 1.4 it should say "Use the value of the Fermi energy given in Exercise 1.2".

Chapter 2
p. 68 There is a missing $\frac{1}{2}$ in the equation $E_{K,\text{flow}} = \frac{1}{2} m V^2$.

p. 87. Fig. 2.14 should be rotated clockwise by 90°.

Chapter 3
p. 139. Fig. 3.7 should be rotated clockwise by 90°. Also the letter σ appears as a 0, as in $3 \sigma E = -1.5210, 4 \sigma E = -0.8038, 5 \sigma E = -0.5544$, and $6 \sigma E = 0.2755$

Chapter 4
p. 213 immediately below Eq. (4.2.1) it should read:
where Q_{ads} is

p. 221 There is a missing minus sign in Eq. (4.4.14)\[q_{\text{vib}} = \prod_i \frac{1}{1 - \exp(-h \nu_i / k_b T)} \]

On p. 230, Eq. (4.62) is referenced twice rather than Eq. (4.5.6) Comparing this result to our CTST result in Eq. (4.5.6)…
At $\theta = 0$, Eq. (4.5.6) reduces to
p. 231. In Eq. (4.5.17), should read

\[s = s_0 (1 - 2\theta) \text{ for } \theta < 0.5 \]
\[s = 0 \text{ for } \theta \geq 0.5 \]

(4.5.17)

On p. 235, Eq. (4.6.1) should read

\[pk_{\text{ads}} (1 - \theta) = \theta k_{\text{des}} \]

(4.6.1)

On p. 236, Equation (4.6.8) should read

\[\frac{1}{\sigma} - \frac{1}{\sigma_0} \approx \frac{1}{\sigma} = \frac{1}{bp} \quad \therefore \sigma = bp \]

(4.6.8)

p. 238

Temperature programmed desorption17,57-60

\section*{Chapter 5}

p. 270. The figure caption and discussion do not make it completely clear that \(r \) is the radius of the meniscus (the effective radius of the bubble) and that \(r_c \) is the pore radius at the top of the meniscus. In the case of a hydrophilic surface with \(\psi = 0^\circ \), these two are equal. The figure caption should read.

Fig. 5.7 (a) A conical pore with a hydrophilic surface induces the condensation of water and the condensation radius \(r_c \) (i.e. the width of the pore at the point where the meniscus forms) is equal to the effective radius \(r \) of the "bubble" of condensed liquid that forms the meniscus. (b) Capillary condensation in a pore with a partially wetting surface, in which case the bubble has a greater radius than the pore radius where condensation occurs, \(r > r_c \). (c) A cylindrical pore with a width \(r_1 \) significantly smaller than the length, \(r_2 \). (d) An illustration of meniscus formation in the presence of two spherical particles of radius \(R_p \).

p. 292. In problem 5.8 it should read

\(\text{Si}(111)-(1 \times 1) \) layer

p. 293. Problem 5.15 should read

5.15 Calculate the effective pressure due to capillary forces and the critical film thickness for a porous silicon film with a porosity \(\varepsilon = 0.90 \) when dried in air after rinsing in water or ethanol. The mean pore radius is \(r_p = 5 \text{ nm} \). \(\gamma_{\text{EtOH}} = 22.75 \text{ mN m}^{-1} \), \(\gamma_{\text{water}} = 71.99 \text{ mN m}^{-1} \), \(\gamma_{\text{Si}} = 1000 \text{ mN m}^{-1} \), \(E_{\text{Si}} = 1.62 \times 10^{11} \text{ N m}^{-2} \).

\section*{Chapter 6}

p. 310. Eq. (6.4.26) should read
\[K_7 = \frac{(\theta_{\text{H}_2})^2}{(p_{\text{H}_2}/p_0)(\theta_*)^2} \] (6.4.26)

p. 313 The entropy term for Rxn. (6.5.1) is favourable for the reaction as written.

p. 316. Fig. 6.7 should be rotated clockwise by 90°.

p. 331. Eq. (6.14.2) should read

\[\theta_{N*} = \frac{P_{\text{NH}}P_0^{0.5}}{K_3K_4K_6K_7P_{\text{H}_2}^{0.5}\theta_*} \] (6.14.2)

p. 329 "intermediately strong interactions"

Chapter 7

Equation 7.1.4 should read

\[e_0(x) = 0.0726 x \]

Chapter 8

p. 404, not really a mistake but the typography looks a bit confusing so better would be to put the factors in as fractions:

"with a mean energy \(E_F + \frac{1}{3}\delta E \). They go on to collide with two more electrons near \(E_F \) to form four electrons at \(E_F + \frac{1}{2}\delta E \), etc."

p. 448. In Exercise 8.3, Eq. (8.9.4) it should be \(I_{\text{den}} \) as in

\[I_{\text{den}}(t) dt = a_d \frac{L^4}{t^2} \exp\left(-b(L/t)^2\right) dt \] (8.9.4)

p. 449. In Exercise 8.10, the final state contains a 5\(\sigma^{-1} \) term and should read:

8.10 Consider a CO molecule adsorbed on a metal surface such that its 5\(\sigma \) state lies far below \(E_F \), its 2\(\pi^* \) state is very close to but slightly above \(E_F \) and the 6\(\sigma^* \) state lies far above \(E_F \). Describe the electron dynamics that lead to two different 5\(\sigma^{-1} \) state after absorption by the absorbed CO of a photon with an energy that is resonant with the 5\(\sigma \rightarrow 6\sigma^* \) transition.

p. 450 In Exercise 8.17, it should read: Eq. (8.4.11).

p. 451. The overpotential is defined with a switched sign, and should read:

(b) If the Gibbs energy of activation depends on the **overpotential** \(\eta = U_0 - U \)
In some of the hardbound editions, Exercise 8.18 and 8.19 as well as the references to Ch 8 and Appendix I do not appear.